Philadelphia Solar Love: City Council Commits to 20K Solar Roofs

posted by Kristine Wong on April 4th, 2014

140402-phillyIf Philadelphia has its way, solar energy could be on its way to become as synonymous with the city as Rocky Balboa and the Liberty Bell. Recently, the city council unanimously passed a resolution aiming to install enough solar capacity to power 20,000 homes by the end of 2025 — an amount that will accelerate Mayor Nutter’s commitment to reach 57.8 MW of solar-generated electricity by 2021.

[Cross-posted from SolarEnergy.net.]

“On one hand it sounds rapid and dramatic — and it is, but if we look at the growth of solar around the country, it is very achievable if we put our minds to it,” said Elowyn Corby, a clean energy associate for PennEnvironment, the nonprofit organization that led the effort to get the resolution passed.

The 20,000-roof goal — which PennEnvironment is hoping to realize through a number of strategies, including a special low-interest loan for solar, tax credits and funding from federal and state sources — translates to an installed capacity of 120 MW. The organization zeroed in on that particular goal after consulting with a number of solar experts and individuals familiar with the range of policies and requirements needed to get the systems up and running within the city.

Many of the people Corby consulted told her that a 120 MW goal for Philadelphia solar was not as ambitious as the city could be, she said, but the organization felt it was important to make sure it set an amount that could be initially achieved as a way to create even more momentum for solar.

Though Pennsylvania is far from being a solar leader, the city of Philadelphia itself has established a strong foundation for sun-powered energy. Philadelphia has already installed between 8-9 MW of solar, Corby says, thanks to an early stimulus from a 2008 grant from the U.S. Department of Energy [PDF] to establish policies and receive technical assistance aimed at making solar cost-competitive with conventional electricity sources.

Since the 20,000 solar roofs resolution isn’t legally binding, PennEnvironment knows its work to reach the goal has been cut out for them.

“The biggest thing we need to do is demonstrate this is something that Philadelphians care about,” Corby said. “Things like this are much harder to do when you’re not able to demonstrate that the community is behind it — that solar is a communal vision and that people want to see it.”

PennEnvironment kickstarted its public outreach and community organizing by getting 850 residents to sign a petition for the 20,000 solar roofs goal over the course of one week. It’s also working with a coalition of partners, including PennFuture, Clean Air Council, Solar States and Community Energy to develop a working group with city council member Bobby Henon as a vehicle to coordinate its work over the next decade.

“This is just the start,” Corby said. “The resolution is a way to commit to a goal, and now we need to gather the whole community who cares about solar — and keep building.”

Philadelphia sunrise photo CC-licensed by PierTom on Flickr.

Honda Launches a Net-Zero Energy Smart Home Project in California

posted by Scott Thill on March 31st, 2014

honda smart home“Together, our homes and our cars produce about 44 percent of the greenhouse gas emissions contributing to climate change,” reminds Honda VP of environmental business development Steve Center, in the video overview for its intriguing Smart Home project, which opened this week on the University of California, Davis campus.

Honda’s master plan is to slash that pollution by running on sunshine.

Whether the plan works or not depends on the U.C. Davis resident lucky enough to shack up in Honda’s “living laboratory” and put its zero-net goals to the test. Empowered by a 9.5 kw photovoltaic system feeding a 10kWh lithium-ion storage battery, which plugs into its complementary direct-current Fit EV, Honda’s net-zero energy Smart Home is a symbiotic experiment in green living — and driving. That may seem strange in Davis, nationally lauded for its bicycling ethos and politics, but U.C. Davis’ West Village is a zero-net paragon.

“What sets Honda Smart Home apart is that it integrates transportation into the home in a very sophisticated manner, while maintaining zero net energy performance,” Honda spokesperson Matt Sloustcher told SolarEnergy, after returning from a walk-through. “We will use the home as a living lab to evaluate new technologies and business opportunities at the intersection of transportation, energy and the environment.”

Honda claims the Smart Home/Fit EV team-up chops 11 tons of C02 emissions annually, and easily leapfrogs California’s zero-net residential construction goals, residing in faraway 2025. Its user-friendly digital home management system smooths the transition to clean(er) living by modulating consumption, especially during peak demand, while the Smart Home overall reportedly consumes less than half the juice of a “similarly sized home in the Davis area.” Checking that pleasing math will be its live-in resident, of course, as well as visiting researchers from U.C. Davis and Northern California’s utility Pacific Gas and Electric (PG&E).

honda smart home dashboard
There are other bells and whistles, including a subterranean geothermal pump, carbon-reducing pozzolan in its concrete, LED lighting, passive design and more, although it has yet to nail down an Energy Star or LEED rating. But the realistic test of any optimistic Smart Home is how close it is to market, and how much it will cost homebuyers. SolarEnergy has queried Honda about these major sticking points, and will report back any update. Until then, cross your fingers for a zero-net present instead of a future.

Infographic: How the World Celebrates Earth Hour

posted by Matthew Wheeland on March 28th, 2014

earth hour logoMark your calendars and set your alarms: Saturday, March 29 at 8:30PM local time marks the sixth annual International Earth Hour, a time when individuals, communities, companies and cities demonstrate their concern about the planet by turning off their lights for an hour and coming together for the planet.

Since Earth Hour’s launch in 2007 as a local event in Sydney, Australia, Earth Hour has expanded across the globe, with 2014 promising to be the biggest event yet. For 2014, the organizers have launched Earth Hour Blue, a global crowdsourcing and crowdfunding platform to engage people around the world in projects that bring environmental and social benefits to their communities.

Last year, hundreds of millions of people, in more than 7,000 cities, towns and municipalities, across 152 countries took part in Earth Hour. In advance of this year’s event, we’ve created a global map highlighting some of the events and impacts from Earth Hour 2013. (Click the image for a larger version.)

 

 earth hour infographic

 This post originally appeared on SolarEnergy.net.

 

Infographic: For World Water Day, Go Solar to Save Water

posted by Matthew Wheeland on March 19th, 2014

When people think about going solar, they’re usually thinking about their pocketbooks, not the planet. That’s reasonable, of course, since homeowners save an average of $84 a month with solar.

And when people do think about saving the planet with their solar panels, they’re probably thinking more often about the incredible amounts of carbon pollution they’ll be avoiding by switching to clean energy.

But a lesser-known fact about solar is that it also saves lots of water, and on World Water Day — and one that’s happening in the midst of a devastating drought in the West — that’s an important fact to highlight.

The infographic below shows how our four of the most-common energy sources use water at every stage. In a nutshell, solar wins across the board.

 

World Water Day infographic

 
So this World Water Day, go solar — for your pocketbook and for the planet!

Minnesota Becomes First State to Put a Value on Home Solar Power

posted by Matthew Wheeland on March 17th, 2014

minnesota solar installationOn Wednesday, the Minnesota Public Utilities Commission voted to become the first state in the nation to come up with a methodology for calculating the value of solar power generated by consumers — and not just how much that power is worth to the utility company and its customers, but to society and the environment as a whole.

[Editor's note: This article, by Kiley Kroh, originally appeared on ThinkProgress, and is reprinted with permission.

As solar energy in particular skyrockets in the U.S., placing a dollar value on that power has been challenging and is often ignored, which makes Minnesota’s effort an even bigger step. “Minnesota has really set itself apart by determining a methodology to calculate the true value of solar to the electricity grid — a value that should include the full range of benefits as well as the costs,” said Mari Hernandez, energy research associate at the Center for American Progress. “This decision could influence other states as they evaluate how to move forward with their own solar-related policies.”

Why do we need to find the ‘value of solar?’

When customers install a solar system on their homes, it doesn’t just provide them with a good feeling that they’re boosting clean energy and cutting back on the electricity they get from fossil fuels. It also provides a clear value to utility companies. Solar generates during peak hours, when a utility has to provide electricity to more people than at other times during the day and energy costs are at their highest. Solar panels actually feed excess energy back to the grid, helping to alleviate the pressure during peak demand. In addition, because less electricity is being transmitted to customers through transmission lines, it saves utilities on the wear and tear to the lines and cost of replacing them with new ones.

The tricky piece of the equation, however, is determining how much that excess solar power produced by customers and sold back to the grid is worth.

Why is Minnesota’s calculation special?

Minnesota’s value of solar is particularly groundbreaking because the commission chose to look beyond the economic value of solar power to the utility and take into consideration the cost to society and the environment that comes from burning fossil fuels. The decision comes after “nearly two years of discussions among state officials, utility representatives and solar advocates,” prompted by a 2013 bill “requiring the state’s energy office to develop a formula that utilities may use to determine how it should compensate customers who generate electricity from solar panels,” Midwest Energy News reported.

In the end, at the urging of environmental groups and the state’s Department of Commerce, the commission voted to adopt the U.S. government’s social cost of carbon figure.

Put simply, the social cost of carbon is the government’s estimate of how much carbon emissions harm the economy — such as the cost to public health, agricultural output, sea-level rise and other damaging effects that stem from carbon pollution and climate change. Clean energy advocates argue that the cost of carbon doesn’t really get accounted for in the current energy economy; even when customers are compensated for generating solar power, that calculation typically doesn’t include the larger benefit that comes from decreasing the amount of carbon pollution that’s emitted into the atmosphere.

One of the dissenting votes in Minnesota’s decision came from Commissioner David Boyd, who argued that the government’s social cost of carbon figure hadn’t been adequately vetted. The U.S. government’s mid-range estimate for the cost of carbon in 2015 recently increased to $37 per ton of carbon dioxide, a number the Natural Resources Defense Council, Environmental Defense Fund, and the Institute for Policy Integrity argued was far too low in a report released Thursday.

As Jeff Spross explained on Climate Progress, estimates vary widely and “the relevant science has put together studies pegging the SCC at anything from $55 per ton, to $100 per ton, to as much as $900 per ton.”

While the social cost of carbon will likely be debated for some time, Minnesota’s decision to incorporate the federal government’s calculation is a significant milestone for states determining the true impact of clean energy.

How will it work?

“Investor-owned utilities will now have the voluntary option of applying to use the value-of-solar formula instead of the retail electricity rate when crediting customers for unused electricity they generate from solar panels,” according to Midwest Energy News.

Even though the new formula is optional, solar customers in Minnesota will be backed up by their current compensation structure, a policy called net metering. Hernandez notes that it’s worth pointing out the differences between this new voluntary tariff and the state’s current net metering policy. Through net metering, customers who generate their own renewable power, such as solar power, receive a credit for any excess electricity they produce beyond what they use on-site. Under a value of solar tariff — also considered a feed-in tariff — customers buy all of the electricity they use on-site from the utility, and then sell all of the solar power they produce to the utility. “Essentially, the state’s net metering policy values customer-generated renewable power used on-site and sent back to the grid at the retail electricity rate,” she explains, “while the voluntary tariff will be based on the state’s methodology, could eventually be set above or below the retail electricity rate, and would not differentiate between power used on-site or put back on the grid.” Rates under the new tariff structure in Minnesota will be set for a 25-year term and adjusted annually for inflation.

As solar establishes itself in several states across the U.S., clean energy advocates, consumers, and utilities are quickly finding themselves at odds over the value of solar power and how much it’s worth to all of the stakeholders involved, as well as to society and the environment as a whole. 43 states and the District of Columbia currently have net metering policies in place and several key solar states, such as Arizona and Colorado, have seenheated battles over the future of net metering. Last year, Arizona added what amounts to a $5 per month surcharge for solar customers and other states are considering similar measures.

Minnesota solar installation photo CC-licensed by Minnesota Solar Challenge on Flickr.

Solar Jobs: Solar Leads the Nation in Creating Jobs

posted by Matthew Wheeland on March 13th, 2014

clean jobs reportThe last couple of weeks have seen a number of great stories published about the benefits that solar is bringing to the economy and the planet. Not only have we seen state rankings for solar potential from the National Renewable Energy Laboratory, a look back at the incredible solar boom of 2013, and a roadmap for reaching 100 percent renewables in every state by 2050 — we’ve also seen how veterans are benefiting from solar jobs in large numbers across the country.

A new report from Environmental Entrepreneurs (E2) adds more good news to the stack, showing that last year, more than 260 projects created more than 78,600 clean energy and clean transportation jobs were announced in 2013. Over the past two years, since E2 has been tracking the data, clean energy and clean transportation has created more than 186,000 jobs in the U.S.

“Our report makes it clear. When we invest in clean energy and clean transportation, we put people to work in every corner of the country,” E2 Executive Director Judith Albert said in a statement. “Whether it’s a new wind farm in Iowa, an energy efficiency retrofit in Massachusetts, or a utility-scale solar array in Nevada, these projects require American ingenuity and labor. The sector is helping stimulate our economy.”

Through the report, solar shines as the biggest creator of new jobs: In total, solar more than 25,600 jobs in generation and manufacturing, far outstripping any other sector. Building energy efficiency claims over 12,500 jobs created in 2013, and public transportation, wind power and smart grid round out the top five job creators.

The chart below shows one of the regional breakouts for clean jobs in 2013 — in the Southeast, solar led the pack in job creation, but robust job growth also happened in energy efficiency, bioenergy and manufacturing.

1401313-jobs-fig1
Download the full report from E2, available here [PDF].

SEIA Report Tracks Solar’s Incredible 2013, as the Boom Continues

posted by Scott Thill on March 7th, 2014

seia reportQuick! Close your eyes and picture the future. Is it solar-powered? If you said no, it’s time to unplug your reality television.

Here’s some brighter programming. Solar Energy Industries Association’s 2013 report on U.S. capacity installations is in (PDF), and it’s beyond safe to say that solar is on fire. Although it should come as a surprise to no one who has been paying attention to the sector, or our wider global energy picture, the photovoltaic year that was increased 40 percent over 2012, installed 4,751 megawatts and booked $13.7 billion in market value.

“The U.S. solar market showed the first real glimpse of its path toward mainstream status,” the SEIA report explains. “The combination of rapid customer adoption, grassroots support for solar, improved financing terms, and public market successes indicated clear gains for solar in the eyes of both the general population and the investment community.”

Predictably, half of that came from California, which is acting like a state that takes disruptive climate change quite seriously. It reigned above the rest with 2,745 MW, the only quadruple-digit winner of the bunch. Perhaps having installation leader SolarCity and efficiency leader Sunpower, whose stock grew 431 percent(!) last year in Cali’s backyard had a little something to do with that. Or it could be that historically progressive California has usually embraced the future as others have clung to the past. To wit, as SEIA’s 2013 report infographic notes, “half of all capacity ever added in California was installed in 2013.”

Other states are catching up, however. Last year, 100 percent of new electrical capacity installed in Arizona, Illinois, Massachusetts, New Jersey, Missouri, Vermont and even gridlocked D.C. came thanks to solar. Arizona came behind California with 700 MW installed last year, which would likely have been higher were it not for a turf battle between utilities and net metering, as SolarEnergy has noted before.

Nationally speaking, however, America is statistically speeding up. In 2013, the sunshine industry accounted for 29 percent of all new electricity generation capacity, a notable increase from 10 percent in 2012, as costs further cratered 15 percent. SEIA forecasts 26 percent growth in photovoltaic installations for this year, mostly in the residential market. It all looks good on paper and in practice.

But no one should break out the party hats. Solar is literally in a death race with so-called natural gas, which accounted for a whopping 46 percent of new electrical generation capacity installed last year, taking first place in the competition for our new energy normal. As coal fades into memory, at least in America, solar is going to have to work even harder to persuade consumers, industry and especially government that it is the only true renewable energy in the global marketplace. Let’s get back to work.

How L.A. is Implementing the Nation’s Largest Solar Feed-in Tariff

posted by Kristine Wong on March 3rd, 2014

LA solar roofWhen it comes to rolling out solar across the rooftops, Los Angeles is the city to watch. With 100 MW of installed solar capacity to distribute among building owners who can sell back the energy to the grid, the city’s Department of Water and Power is currently implementing the largest solar feed-in tariff program in the U.S. How is the program progressing, and what sort of lessons has it learned that other cities can apply to their own initiatives?

[Editor's note: Cross-posted from SolarEnergy.net.]

A recently released evaluation of the first year of the feed-in tariff program (also known as Clean LA Solar) provides some insight. The study was commissioned by the Los Angeles Business Council Institute and conducted by UCLA’s Luskin Center for Public Affairs.

To get a handle on its performance in the first year of the estimated 3-year program, Luskin Center researchers J.R. DeShazo and Alex Turek interviewed Clean LA Solar administrators, solar developers and property owners about their experiences during the initial two phases. LA’s Department of Water and Power is tasked with deploying 20 MW during each six-month phase to qualified applicants.

What’s been going on

Since its launch one year ago and allocation of 40 MW of rooftop solar capacity (via 20-year contracts to each participant), Clean LA Solar is on track to meet its 100 MW goal by 2016, according to the evaluation, and has accomplished the following:

  • Jobs: Generated 862 job-years (one year of one job) as determined by job-years created in the manufacturing of the solar system’s components (excluding the PV cells), installation, grid connection, operation and management, as well as the utility’s work to upgrade the grid’s network and administration of the feed-in tariff program
  • Sufficient public interest: Received 226 applications for its small project category (up to 3 MW installed capacity for each) and large project (between 30 kW to 150 kW) categories — an “adequate” number, according to DeShazo and Turek
  • Direct investment in the City of Los Angeles: Approximately $122 million from the solar industry (assuming that the average cost of installed solar watt is $3.05)
  • Avoided greenhouse gas emissions: Saved 2.145 billion pounds of CO2 when compared to a coal-generated power plant, or allocated enough renewable energy equivalent to removing 200,000 cars from Los Angeles roadways
  • Solar-powered homes: Allocated enough renewable energy to power approximately 8,640 homes in a year

“Although the first and second tranches [phases] were successful, this study highlights an opportunity to make the process more user-friendly and cost-efficient in the future,” said LA city councilmember Mitchell Englander.

What could be done better?

Researchers identified opportunities for improvement. These include:

  • Monitor pricing to keep smaller projects competitive: Due to economies of scale, current price offerings may not be attractive for smaller project developers if the cost of solar components, capital, or installation rise
  • Enable applications to be rolled over to the next phase: Allow building owner applicants to be automatically considered for the next phase (rather than making them apply all over again if a phase’s 20 MW allocation has already been distributed). This helps meet a common challenge among solar developers to continue working with building owners who will host solar systems on site through the Clean LA Solar program
  • Establish a standardized acceptance and rejection timeframe for applicants: Applicants reported unclear expectations as to how quickly they would hear from Clean LA Solar as to whether they were accepted or not
  • Communications: Applicants would be more likely to understand how to comply with codes and regulations if the city’s building and safety department could develop a Clean LA Solar guide for building owners/program participants. The goals and benefits of the program appear to be poorly understood by the public and the participants, which can hinder program participation
  • Building out programs: Clean LA Solar’s 20-year contract period is not long enough for solar developers to know whether or not it’s worth continued investment for a permanent presence in the city. Policymakers should build out or build upon the program so that companies can make plans to expand their local workforce

Clean energy advocates such as Environment California‘s Michelle Kinman says the program’s success so far is reason to start looking ahead on how the city can commit to an even larger goal of adding on 500 MW to the program to reach a 600 MW of total installed capacity by 2020.

“We want to start now on ramping it up,” said Kinman, clean energy advocate for the Los Angeles-based nonprofit organization. “It’s just scratching the roof of LA’s full power potential.”

Echoing the evaluation’s findings, Kinman said that the city needs to send a signal to developers of a continued and expanded commitment to solar, otherwise they may feel compelled to invest elsewhere.

Environment California is working with the LA Business Council and a coalition of other organizations to get the city to source 20 percent of its power — 1200 MW — from solar by 2020. The timing couldn’t be better, as Los Angeles is currently considering its future energy mix, thanks to a resolution passed last April which commits to being coal-free by 2025, two years ahead of a state mandate.

But while Los Angeles mayor Eric Garcetti, local and state officials and an array of organizations and community leaders have endorsed the call, the city has yet to formally sign on.

“Rooftops of office buildings, warehouses and apartments within the Los Angeles basin are proving to be outstanding sites for solar power plants,” said Brad Cox, chairman of the LA Business Council Institute. “With about 10,000 acres of rooftops in Los Angeles, we think the sky is the limit for the [Clean Solar LA] solar FiT program.”

Los Angeles solar roof photo CC-licensed by Flickr user Eric Richardson.

Coal is a Disease that Costs Us $60 Billion a Year

posted by Matthew Wheeland on February 25th, 2014

coal minersI’ll say it up front: We are clearly biased toward renewable energy, particularly home solar systems. That much is obvious. Why we believe renewables are the future of energy is I hope equally obvious, but it can’t hurt to underline the reasons.

In just the last two months, we’ve seen a series of disasters small and large that are a direct result of our continued reliance on dirty energy. Whether it’s coal ash fouling a North Carolina river or a little-known chemical used by the coal industry leaving 300,000 West Virginians without water, it’s clear that the price of dirty energy is much higher than we usually think.

Last week, clean energy visionary Jigar Shah — founder of SunEdison, founding CEO of the Carbon War Room, and more — detailed the healthcare costs of coal in a post on LinkedIn. The number is shocking: Shah writes that $60 billion of healthcare expenditures each year are directly attributable to mining, transporting and burning coal for energy.

That number is based on a 2009 report published by the National Academy of Sciences, so you can expect that number has shifted somewhat — according to the U.S. Energy Information Administration, between 2009 and 2011 coal production increased by almost 20 million tons, though we’re still 90 million tons below the all-time high for coal production set in 2008.

Nonetheless, we’re paying a hefty price for coal. Shah lays out a short list of additional costs from coal production:

  • Fossil fuels cause an estimated 30,100 premature deaths each year, as well as more than 5.1 million lost workdays
  • Coal-fired power plants need lots of water for heating and cooling, with as much as 41 percent of fresh-water use going to cool coal, gas and nuclear power plants;
  • Pollution from power plants is a major cause of asthma in people of every age, with childhood asthma alone costing as much as $2 billion per year
  • In coal-mining areas of Appalachia, 60,000 cases of cancer are directly linked to “mountaintop removal” mining practices.

The good news, as Shah has it, is that regulations put in place by forceful protests by concerned Americans ensure that the oldest and dirtiest coal-fired power plants will be too expensive to run in just six years.

But what will be the replacement for this dirty energy? The powers that represent the status quo would have our power come from slightly-less-dirty energy in the form of natural gas and oil, produced in ever more invasive, destructive and polluting ways — and ever closer to population centers nationwide.

Shah argues that there is a better way: “Replacing old coal plants with clean energy solutions would represent the largest wealth creation opportunity available in the USA — $50B per year. Even without a plan and wide support, in 2013, the solar industry created more jobs than the coal mining industry.”

And he points us to The Solutions Project, which we just reported about on SolarEnergy.net yesterday: Scientists at Stanford have begun an ambitious project to map out a path to 100 percent renewable energy for each and every state in the U.S.

The project has already unveiled a roadmap for California’s clean energy future, as well as for Washington State and New York, and it will be interesting to see what the maps look like for coal country and other areas that are more heavily invested in fossil fuels.

In the meantime, check out Jigar Shah’s entire post and learn how you can take action to get us off dirty coal at The Solutions Project website. And while you’re at it, go solar if you haven’t already!

Matthew Wheeland is the editor of SolarEnergy.net, a sister publication to One Block Off the Grid and PURE Energies.

Coal miners photo CC-licensed by the United Nations.

What It’s Like to Climb the World’s Second-Tallest Mountain

posted by Matthew Wheeland on February 12th, 2014

aconcagua peak[Editor's note: When One Block Off the Grid CEO Zbigniew Barwicz climbed Mt. Aconcagua for charity last month, we blogged about some of his adventures. In this excerpt of a longer article originally published in Chatelaine Magazine, he tells more of the story to Sarah Treleaven.]

Last month, Zbig Barwicz climbed Argentina’s Aconcagua mountain to help raise funds for the David Suzuki Foundation. His amazing adventures (and incredible pictures!) are chronicled in his blog, Climb for DSF. Here, Barwicz explains what it’s really like to climb one of the world’s highest mountains.

I climbed Aconcagua — the highest mountain outside of the Himalayas and one of the Seven Summits. It’s close to 23,000 feet and I achieved it in a guided expedition over 20 days. I went with the Alpine Ascent International group and our guide had climbed Mount Everest twice. We also had a sherpa from Nepal. There were 10 climbers from Canada, the United States and Australia. It can be challenging to share a tent with two or three people you don’t know —  none of whom can take a shower for three weeks. You have to work together to build the camp and get things done. It can be pretty intense, but we didn’t have any major drama.

Every day is different. It took three days just to walk to the mountain and get to base camp. You’re drinking four or five litres of water a day and eating at least 3,000 calories. You have to be very disciplined about eating and drinking every hour Packing up or unpacking camp takes longer and longer the higher you get because the altitude makes you do everything slower….

Read the rest at Chatelaine Magazine.

High electricity bill? We can help.

At One Block Off the Grid, our job is to help homeowners save money and go solar by providing the best options straight from the nation's leading solar providers.

Free Home Solar Quote
FIND OUT HOW MUCH YOU'LL SAVE BY GOING SOLAR